DGT-801 发电机保护的调试方法----ONLLY 培训中心

一. 发电机失步保护

1,保护原理

DGT801 系列装置中提供的失步保护,反应电机机端测量阻抗的变化轨迹,动作特性为双遮挡器。见图6-14-1 所示。

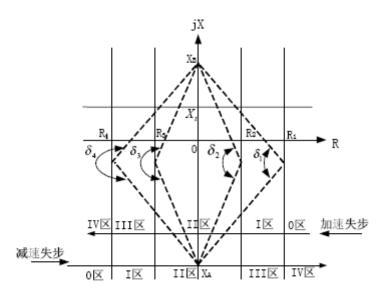


图 6-14-1 发电机失步保护动作特性及过程图

在图6-14-1中

X t ——电抗整定值;

R1、R2、R3、R4——电阻整定值;

 $X_B = X_S + X_T$ (X_S ——系统电抗; X_T ——主变电抗); $X_A = -X'_d$ (X'_d ——发电机暂态电抗)。

由图6-14-1可以看出: 电阻线R1、R2、R3、R4及电抗线 X_t 将阻抗复平面分成0~4 共5个区。发电机失步后,当机端测量阻抗较缓慢地从+R 向-R 方向变化,且依次由0 区→I 区 →II 区→III 区→IV 区穿过时,判断为加速失步;而当测量阻抗由-R方向向+R方向变化,且依次穿过各区时,就判断为减速失步。

如上所述,测量阻抗依次穿过五个区后记录一次滑极。当滑极次数累计达到整定值时, 便发出跳闸命令。

双遮挡器原理的失步保护逻辑框图如图6-14-2所示。

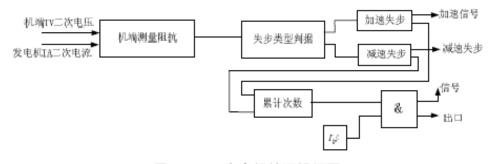


图 6-14-2 失步保护逻辑框图

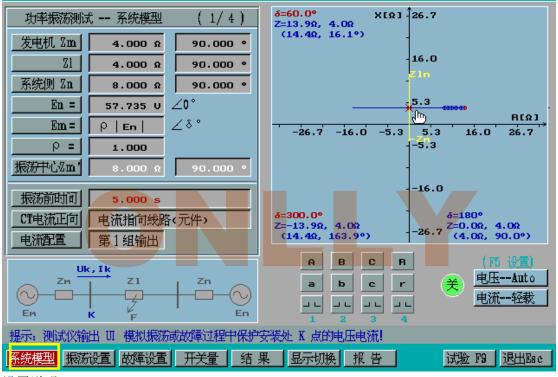
2, 接线方式

(1) 三相电压接至保护的机端TV 三相电压,三相电流接至保护的发电机TA 三相要流仅限交流学习使用

1

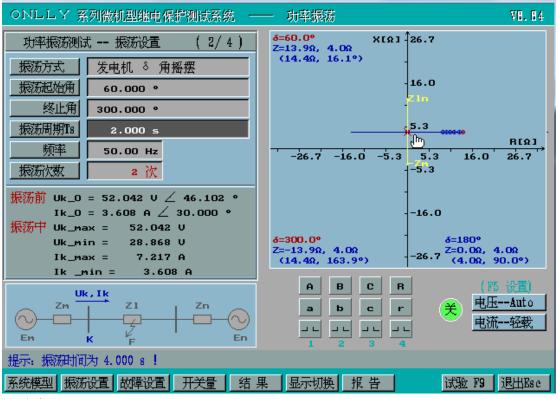
(2) 开入接点 A 接至失步保护跳闸出口接点。

3, 保护设置

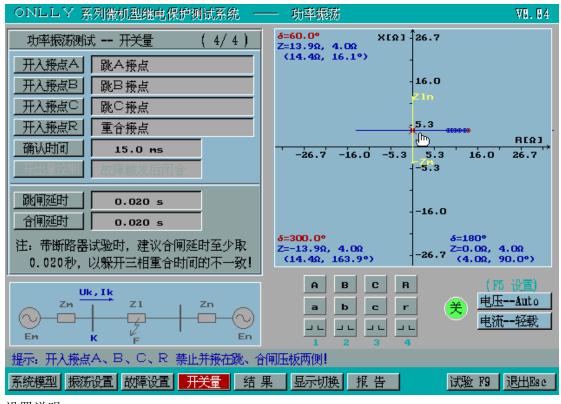

(1) 定值清单

名称	电抗值	各区边界电阻值			各区停留时间			滑极次数		
符号	Xt	R1	R2	R3	R4	T1	T2	Тз	T4	N
数值	5	4	2	-2	-4	0.1	0.1	0.1	0.1	1
单位	Ω	Ω	Ω	Ω	Ω	S	S	S	S	次

(2) 把"失磁和失步"保护投入


4,测试仪设置

- (1) 进入"功率振荡"菜单;
- (2) 功率振荡菜单设置如下:


设置说明:

- ① 置系统模型中阻抗 Zm,Zl,Zn 的幅值(相角均为 90°),以保证计算出的振荡中心阻抗 Z<电抗定值 Xt(5Ω)($<\delta$ =180 振荡中心的电压最小,电流最大;Z=4.0 Ω , 90°) 的,根据以上设置,计算出的阻抗 $Z=4.0\Omega$, 90° (δ =180 $^{\circ}$)。
- ②总试验限时根据滑极次数及振荡周期进行设置,以保证能满足滑极次数。一般可以按以下方程进行整定: T(总试验限时)=N(滑极次数)*t(振荡周期)。

设置说明:

- ② 设置振荡的起始角和终止角,以保证发电机失步后,当机端测量阻抗较缓慢地从+R 向-R 方向变化,且依次由 0 区→I 区→II 区→III 区→IV 区穿过。根据以上设置:当振荡起始角 δ =100° 时,对应的振荡阻抗 Z=6.7 Ω +j4.0 Ω (7.8 Ω , 30.8°),大于电阻定值 R1=4 Ω ; 当振荡起始角 δ =260° 时,对应的振荡阻抗 Z=-6.7 Ω +j4.0 Ω (7.8 Ω , 149.2°),小于电阻定值 R4=-4 Ω ;
- ③ 设置好振荡周期,为保证测量阻抗在各个区所停留的时间大于各时间定值,一般设置为振荡周期 t>2*总时间定值(T1+T2+T3+T4);
- ④ 振荡频率设为 50Hz。

设置说明:

① 根据实际的开入量接线方式,设置开入接点A为"跳A接点";

5, 测试结果:

根据以上设置,保护报"发电机失步-加速失步""发电机失步-跳闸"。

注:只调换振<mark>荡的起始</mark>角和<mark>终</mark>止角设置值,其他参数不变,重新开始试验,保护报"发电机失步-减速失步""发电机失步-跳闸"。

二、发电机失磁保护(阻抗原理)

1,保护原理

阻抗型失磁保护,通常由阻抗判据(Zg<)、转子低电压判据(Vfd<)、机端低电压判据(Ug<)、系统低电压判据(Un<)及过功率判据(P>)构成。

(a) 阻抗判据

在DGT801 系列装置中,阻抗判据动作特性见图6-12-1。可知,根据需要整定不同的阻抗园园心和半径可以获得静稳边界阻抗园(图中1 边界),或异步边界阻抗园(图中3 边界),或过原点的下抛阻抗园(图中2 边界),或用过原点的两根切线切去一部分阻抗以满足进相运行,或用进相无功切线切去一部分阻抗以满足进相要求。

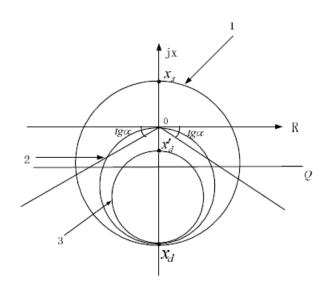


图 6-12-1 失磁保护阻抗园特性

在图 6-12-1 中

x, ——系统阻抗;

 x_d 、 x_d' ——发电机同步电抗和暂态电抗;

Q、 tgα ----失磁保护整定值, 见表 6-12。

阻抗型失磁保护的逻辑框图如图 6-12-3 所示

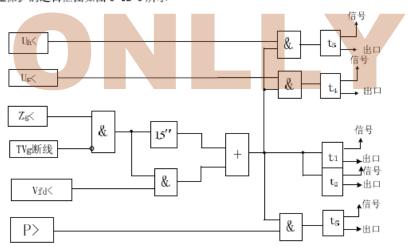
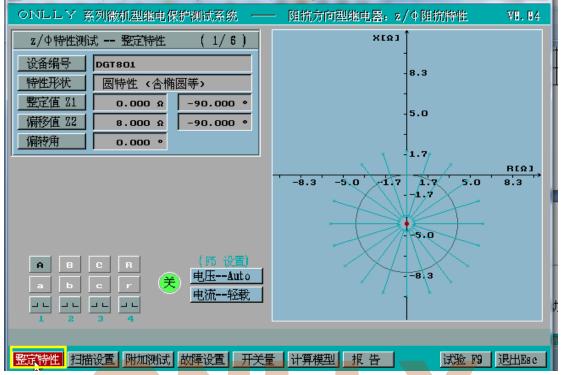


图 6-12-3 阻抗型失磁保护框图

2,接线方式

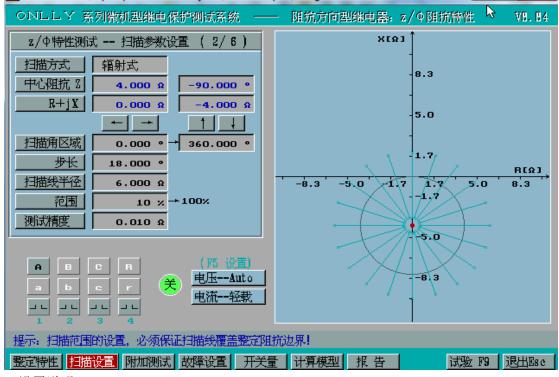
- (1) 将测试仪的 A、B、C 三相电压接至保护装置的机端侧 TV 三相电压端子;将测试仪的 A、B、C 三相电流接至保护装置的机端侧 TA 三相电流端子;
- (2) 将失磁保护的跳闸动作接点接至测试仪的开入接点 A;

3,保护设置


(1) 整定值:

定值名称	定值符号	定值	单位
阻抗园园心(负值)	-Хс	-4	Ω
阻抗园半径	Xr	4	Ω
动作时间	t1	0. 1	S

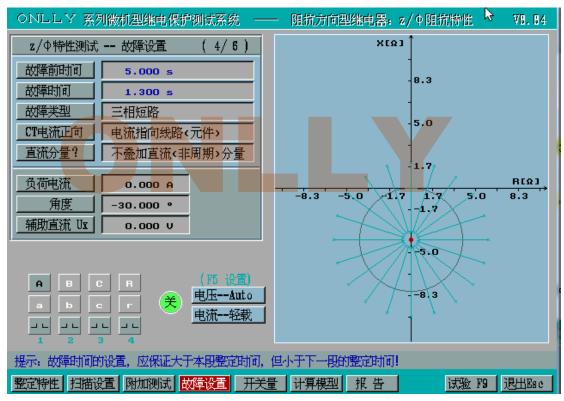
(2) 把"失磁失步保护"投入


4, 测试仪设置

- (1) 进入"阻抗/方向继电器"菜单,选择"阻抗特性(动作边界特性)";
- (2)"阻抗特性(动作边界特性)"菜单设置如下:

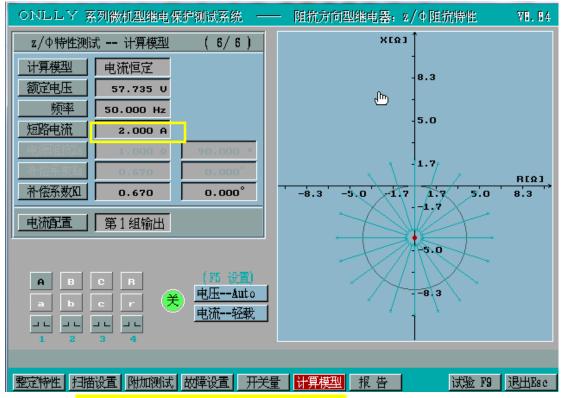
设置说明:

- ① 特性形状: 选为"园特性(含椭圆等)";
- ② 根据阻抗园园心(-4Ω),设置整定值 $Z1=0 \angle -90^{\circ}$ (圆心-半径), $Z2=8 \angle -90^{\circ}$ (圆心+半径),计算出的中心阻抗为 $4 \angle -90^{\circ}$ 。


设置说明:

资料仅限交流学习使用 onlly308

- ① 扫描方式: 选为"辐射式";
- ② 扫描角区域为 0.000° 至 360.00°;
- ③ 步长为 30.000°;
- ④ 扫描线半径为 6.000Ω;
- ⑤ 范围为 10%至 100%;
- ⑥ 测试精度为 0.100Ω。


设置说明:

- ① 故障前时间:设为 5.0s,大于保护的复归时间;
- ② 故障时间:设为 1.3s,大于保护的动作时间;(必须大于保护动作时间, DGT-801的时间定值为 1S)
- ③ 间断时间: 设为 0.0s;
- ④ 故障类型:选为"三相短路";(<mark>必须选择三相短路)</mark>
- ⑤ 故障方向: 选为"正向";
- ⑥ 负荷电流,角度:暂不考虑。

设置说明:

① 动作接点:根据实际的开入量接线方式,选为"A接点":

设置说明:(建议选择阻抗恒定型,其他按默认参数设置)

- ① 额定电压: 57.735V, 频率为 50Hz;
- ② 短路电流: 设为 5.0A;
- ③ 补偿系数 KL: 暂不考虑;
- ④ 电流配置:根据实际的电流接线方式,选为"第1组电流输出"。

注:在该试验中,暂不考虑"附加测试点"的设置。

5, 试验结果

根据以上设置,保护报"失磁保护"动作。

三. 发电机定子匝间保护

1,保护原理

该保护反映的是发电机纵向零序电压的基波分量,并用其三次谐波增量作为制动量。 纵向零序电压取自机端专用TV的开口三角输出端。

保护采用两段式: I段为次灵敏段, II段为灵敏段。动作方程

$$3U_0 > 3U_{oh}$$
 (6-6-1)

$$\begin{cases} 3U_0 > 3U_{of} \\ (3U_0 - 3U_{of}) > K_{\pi} (U_{03er} - U_{03em}) \end{cases}$$

式中

3U₀、3U₀₃₀ ——零序电压基波和三次谐波计算值;

 $3U_{\text{AL}}$ 、 $3U_{\text{AL}}$ 、 K_{AL} 、 U_{Closs} ——纵向零序电压式匝间保护整定值,见表 6-6。

资料仅限交流学习使用 onlly308

保护的逻辑框图如图 6-6-2 所示。

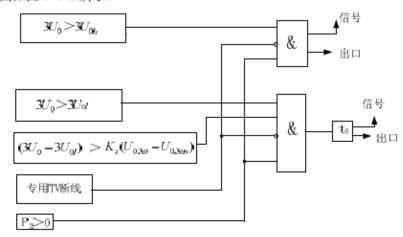


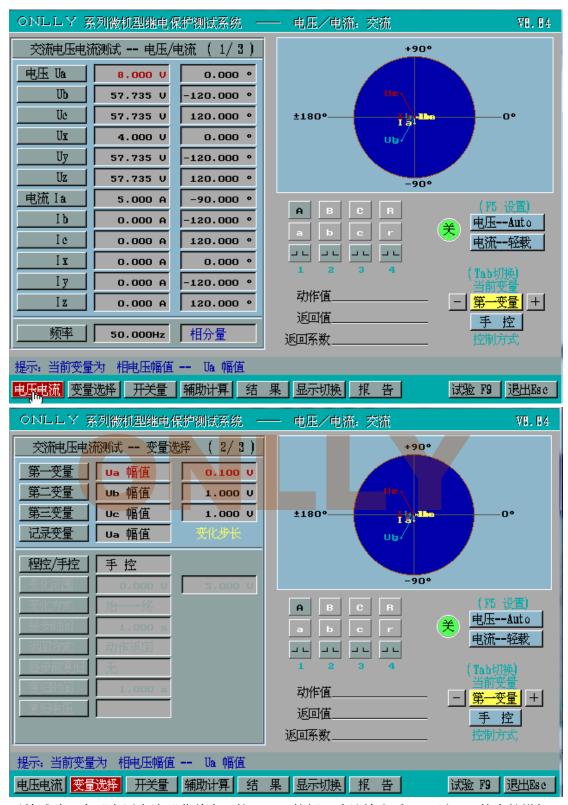
图 6-6-2 纵向零序电压式匝间保护逻辑框图

在图 6-6-2 中 P₂----- 负序功率方向判据; t₀-----短延时;

2,接线方式

- (1) 将测试仪的 A、B、C 三相电压同时接至保护装置的机端侧 TV 和专用 TV 的三相电压端子;将测试仪的 A、B、C 三相电流接至保护装置的机端侧 TA 三相电流端子;将测试仪的第四相电压 Ux 接至专用 TV 的零序电压端子;
- (2) 将定子匝间 P2 保护的跳闸动作接点接至测试仪的开入接点 A;

3,保护设置


(1) 整定值:

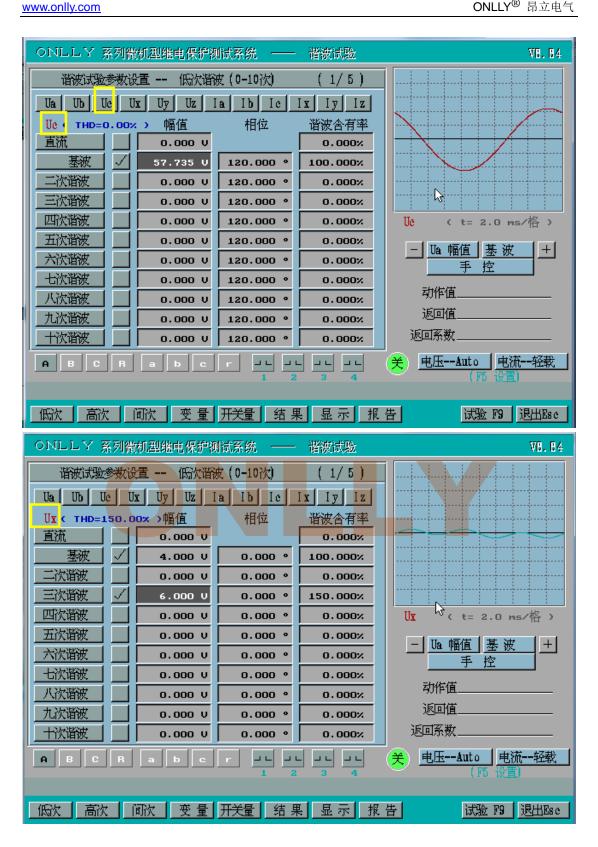
名称	动作电压		压差	三次谐波额定值	三次谐波制动系数	延时	功率动作
高定值 低定值		低定值	上上	二八伯奴钦是但	二八伯汉即约尔奴		方向
符号	3Uoh	3Uo1	ΔU	Uo3wn	Kz	to	Pzf
数值	5	2	8	0. 5	0.5	0.1	0
单位	V	V	V	V	/	S	控制字

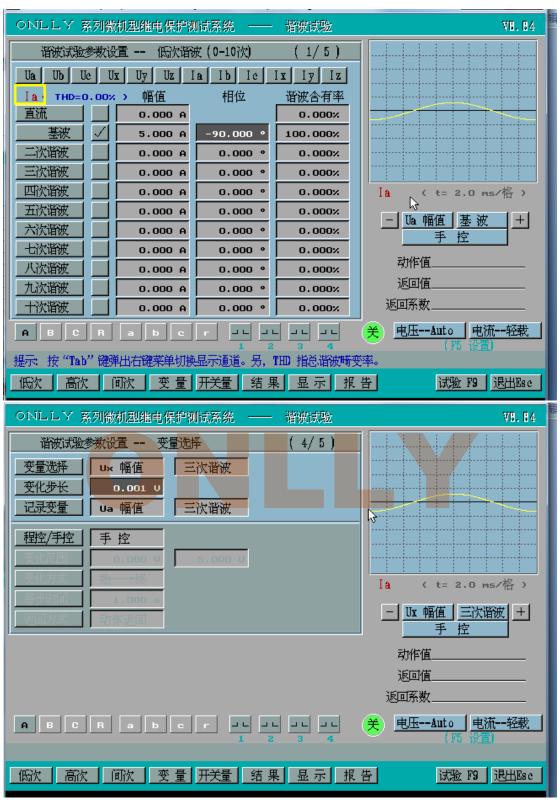
(2) 把"定子匝间 P2"保护投入

4,测试仪设置及试验结果

- (一): 次灵敏电压保护(3U0=Ux>定值3Uh; 输入三相不对称电压及三相不对称电流, A 相电流=90度(灵敏内角为90°)使得P2>0,基波电压Ux,并缓慢升高至保护出口;)
- (1) 进入"电压/电流(交流)"菜单;
- (2)"电压/电流(交流)"菜单参数设置如下: IA=灵敏内角为90°)

开始试验: 在"电压电流"菜单中,按START按钮,确认输出后,Ux以0.1V的步长增加输出,直至保护动作出口。


(二): 灵敏段电压保护(3U0=Ux>定值3UL; 输入三相不对称电压及三相不对称电流, A 相电流=-90度(灵敏内角为90°)使得P2>0,基波电压Ux,并缓慢升高至保护出口;)


(1) 进入"谐波试验"菜单;

(2)"谐波试验"菜单参数设置如下:

ONLLY® 昂立电气

 $UA = 8.0 V \angle 0^{\circ}$, $UB = 57.735 V \angle -120^{\circ}$, $UC = 57.735 V \angle 120^{\circ}$,

 $IA=5A\angle -90^{\circ}$, IB=0A, IC=0A,

Ux设为4V, Ux中叠加三次谐波量为: 6V。

开始试验: 在"谐波试验"菜单中 ,按START按钮,确认输出后,Ux中的三次谐波以 0.1V的步长减小输出,直到保护动作。

四. 过激磁保护(包括发电机、变压器)

1,保护原理

过激磁保护反映的是过激磁倍数,而过激磁倍数等于电压与频率之比。发电机或变压器的电压升高或 频率降低,可能产生过激磁。即

$$U_f = U/f = \frac{B}{B_0} = \frac{U_*}{f_*}$$
 (6-17-1)

式中 U_f ——过激磁倍数:

B、Be--分别为铁芯工作磁密及额定磁密;

U 、 f 、 U_{\bullet} 、 f_{\bullet} ——电压、频率及其以额定电压及额定频率为基准的标么值。

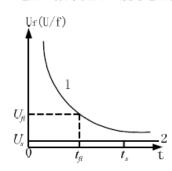


图 6-17-1 过激磁保护动作特性

过激磁保护构成的逻辑框图,如图 6-17-2 所示。

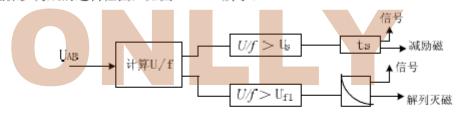


图 6-17-2 发电机或变压器过激磁保护逻辑框图

图中 U_{48} ——发电机或变压器相间电压 (TV 二次值);

 $U_{\rm S}$ 、 $t_{\rm S}$ 、 $U_{\rm fl}$ ——保护整定值,见过激磁保护定值表 6-17。

2,接线方式

- (1) 将测试仪的 A、B 相电压接至保护装置的机端侧 TV 的 A、B 相电压端子;
- (2) 将过激磁保护的跳闸动作接点接至测试仪的开入接点 A:

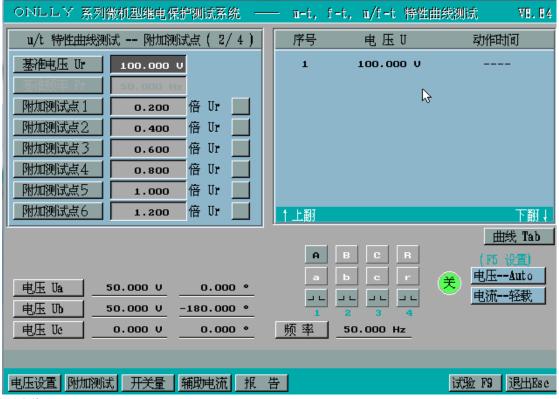
3,保护设置

(1) 整定值:

序号	定值名称	数值	序号	定值名称	数值
01	倍数Uf1	1.1	02	时间tf1	2.0 s
03	倍数Uf2	1.2	04	时间tf2	1.0 s
05	倍数Uf3	1.3	06	时间tf3	0.5 s
07	倍数Uf4	1.4	08	时间tf4	0.1 s
09	倍数Uf5	1.5	10	时间tf5	0.0 s

(2) 把"过激磁"保护投入

4,测试仪设置


(1) 进入"反时限继电器特性"菜单,选择"u-t,f-t,u/f-t 特性"

(2) "u-t, f-t, u/f-t 特性"菜单设置如下:

设置说明:

- ① 变量选择: 变量选择为"电压 U",即试验过程中,固定频率 F,改变电压 U;
- ② U 输出方式:选择试验过程中,电压 U 的输出方式。程序提供了 8 种输出方式,由于过激磁保护原理中采用的是电压 Uab,故选择为"电压 Uab";
- ③ 相角: 试验过程中, 电压输出的相位角 (绝对相位), 默认值为 0°;
- ④ U 变化范围:设定试验时所需要的测试电压的变化范围(起点,终点),根据整定值中的倍数 Uf,设定起点为"100.000V",终点为"160.000V";
- ⑤ 步长: 电压的变化步长。试验时,测试电压从起点出发,以所设定的步长逐点变化,测试各电压点下过激磁保护的动作时间,设定为"5.000V";
- ⑥ 每步时间:测试电压变化过程中,每一电压点所保持的最大测试时间。"每步时间" 应大于过激磁保护整定值中所设定的最长延时(2.0s),故设为"2.500s";
- ⑦ 故障前电压:测试仪在故障前时间内所输出的电压大小。一般此电压应能保证保护可靠返回,设为额定电压"100V";
- ⑧ 故障前时间:为了保证下一个电压测试点测试之前保护可靠返回,每一个测试点输出之前均设置了一个故障前时间。故障前时间内,测试仪输出所设置的"故障前电压",故障前时间一般应大于保护的复归时间,由于该保护无复归时间,故设为"1.000s";
- ⑨ 频率:测试仪在整个试验过程中所输出的交流电压、电流频率,设为额定值 50Hz;

设置说明:

- ① 变量选择: 变量选择为"电压 U",即试验过程中,固定频率 F,改变电压 U;
- ② U 输出方式: 基准电压 Ur、基准频率 Fr: 附加测试点的基准电压 Ur、基准频率 Fr, 一般取保护的额定电压和额定频率。此处虽暂不设置附加测试点, 但由于计算公式 B=U*/f*中的 U、f 标幺值 U*、f*是以额定电压、额定频率为基准计算出来的, 故基准电压 Ur 设为"100.000V", 基准频率 Fr 设为"50.000Hz";
- ③ 附加测试点 1、2、3、4、5、6: 6 个附加测试点,必须选中(打" \checkmark "者)方进行测试,此处暂不设置附加测试点;

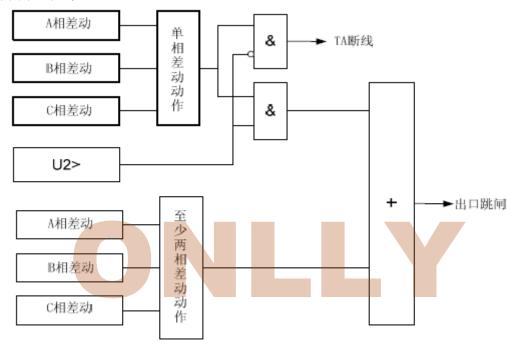
设置说明:

① 动作接点:根据实际的开入量接线方式,选择为"A接点"。

设置说明:

① 电流:测试仪在整个试验过程中所保持的6相电流输出,此处暂不考虑;

5, 试验结果

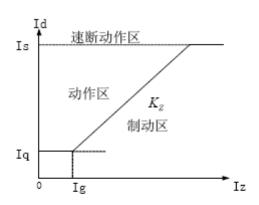

根据以上设置,保护报"过激磁保护"动作。

五、发电机差动(循环出口)

1. 保护原理

发电机纵差动保护是发电机相间短路的主保护。根据接入发电机中性点电流的份额(即接入全部中性点电流或只取一部分电流接入),可分为完全纵差保护和不完全纵差保护。另外,根据算法不同,可以构成比率制动特性差动保护和标积制动式差动保护。

以完全纵差保护,采用比率制动原理,出口设置为循环闭锁方式为例,保护逻辑见图一。因为发电机中性点一般不直接接地,当发电机差动区内发生相间短路故障时,有两相或三相差动同时动作出口跳闸;而当发电机发生一相在区内接地另一相在区外同时接地故障,只有一相差动动作,但同时有负序电压,保护也出口跳闸。如果只有一相差动动作无负序电压,判断为TA断线。


图一 发电机纵差动保护逻辑图(循环闭锁出口方式)

动作方程为:

$$\begin{cases} I_{d} > I_{q} & ; I_{z} < I_{g} \\ I_{d} > K_{z} (I_{z} - I_{g}) + I_{q}; I_{z} > I_{g} \\ I_{d} > I_{s} & ; I_{d} > I_{s} \end{cases}$$

其中:
$$I_d$$
 — 动作电流(即差流), $I_d = I_N + I_T$ I_z — 制动电流, $I_z = I_N - I_T / 2$

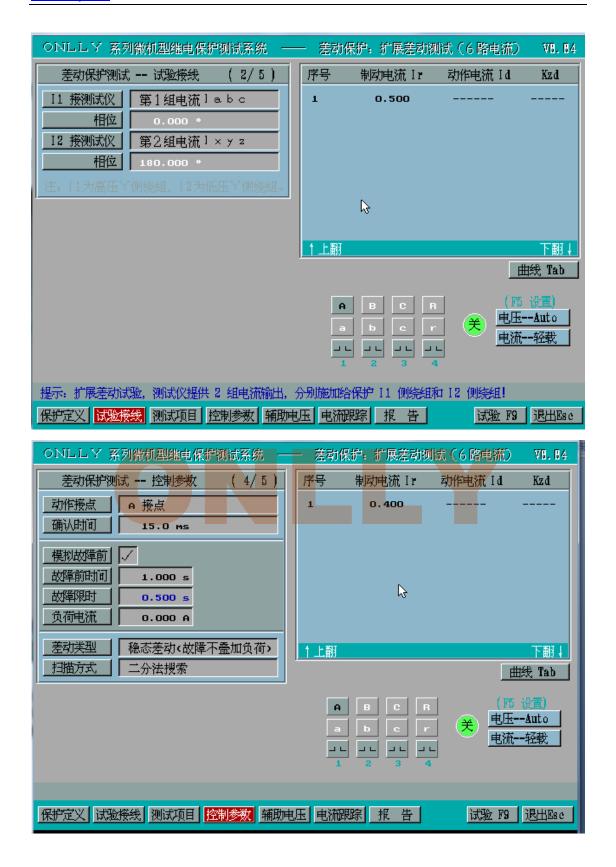
比率制动特性曲线如下:

图二 发电机纵差比率制动特性曲线

2, 接线方式

两组电流分别接至机端侧 TA(Ia;Ib;Ic);中性点侧 TA(Ix;Iy;Iz),开入量 A 接至开出量 1DL(I)和硬压板 1DL(I)(注:硬压板 1DL(I)要闭合)。

3, 保护设置


1) 定值清单

名称	制动系数	启动电流	拐点电流	负序电压	速断倍数(*Ie)	额定电流
代号	Kz	Iq	Ig	U2	Is	Ie(In)
数值	0.3	1	4	5	3	1

- 2) 把"发电机差动(循环闭锁)"保护投入
- 4, 测试仪设置
- 1) 进入差动保护菜单,选择"三相差动"
- 2) 差动保护菜单设置如下:

onlly308

注:在发电机机端侧加AB相电压,使负序电压远大于负序电压整定值(5V)。原因是:当采用循环闭锁出口方式时,为提高发电机内部及外部不同相同时接地故障(即两相接地短路)时保护动作的可靠性,采用负序电压解除循环闭锁(即改成单相出口方式)。

5, 测试结果: (略)

设备编号: 123

测试菜单:差动保护 一 扩展差动测试(6路电流)

测试时间: 2017-04-27, 10:32:04

保护配置:发电机保护,

动作方程: Id = | I1 + I2 | ; Ir = | I1 - I2 | / K , K = 2.0000

式中: 补偿系数 KP1 = 1.0000, KP2 = 1.0000

测试项目: 比率差动 (A相差动)

制动系数: Kzd = △Id/△Ir

序 号	制动电流 Ir	动作电流 Id	制动系数 Kzd
1	0.400 A	1.025 A	
2	0.900 A	1.037 A	0.023
3	1.400 A	1.025 A	-0.023
4	1.900 A	1.046 A	0.042
5	2.400 A	1.163 A	0.232
6	2.900 A	1.280 A	0.235
7	3.400 A	1.448 A	0.335
8	3.900 A	1.596 A	0.297
9	4.400 A	1.744 A	0.295
10	4.900 A	1.941 A	0.394
11	5.400 A	2.074 A	0. 267
12	5.900 A	2.229 A	0.309
13	6.400 A	2.398 A	0.338
14	6.900 A	2.538 A	0. 281
15	7. 400 A	2.700 A	0.323
16	7.900 A	2.876 A	0.352
17	8.400 A	2.988 A	0. 225
18	8.900 A	2.981 A	-0.014
19	9.400 A	2.988 A	0.014
20	9.900 A	2.995 A	0.014
21	10.400 A	2.988 A	-0.014
22	10.900 A	2.988 A	0.000